Infinitely More

Infinitely More

Share this post

Infinitely More
Infinitely More
Multi-valued logic—an introduction
Copy link
Facebook
Email
Notes
More
A Panorama of Logic

Multi-valued logic—an introduction

Extending classical logic to a larger realm of truth, we shall investigate the various multi-valued logics with their extraordinary truth values beyond truth and falsity.

Joel David Hamkins's avatar
Joel David Hamkins
Aug 12, 2023
∙ Paid
9

Share this post

Infinitely More
Infinitely More
Multi-valued logic—an introduction
Copy link
Facebook
Email
Notes
More
4
4
Share

In classical propositional logic, every statement is either true or false. Do you find this reassuring? Or perhaps you find it inflexible or confining. In multi-valued logic we shall extend beyond those two classical truth values and enter a larger realm of truth. We shall introduce various intermediate or supplementary truth values and investigate the logical systems that result. Surprisingly, it turns out that there are many ways to go about it, even when we would seek to add just one new truth value, and various logicians, beginning with Łukasiewicz (1917), but also Tarski, Post, Kleene, Gödel and others, have all proposed different inequivalent three-valued truth-functional logics. And there is a further hierarchy of multi-valued logics with more than three values, many with infinitely many intermediate truth values. Let us explore!

Three-valued logics

Consider a three-valued logic in which we have not only true and false, but also a third truth-value, which we shall denote by the hash symbol # and pronounce as hash. Perhaps we want to regard # as standing for an unknown truth value; or perhaps it is a place-holding truth value in the case of missing information; or perhaps # is meant to indicate that the statement is only contingently true; or perhaps # means the truth value is somehow under-determined, neither true nor false; or it is perhaps over-determined, indicating both true and false.

There are a variety of metaphors like this that can lead one to particular ways of defining a three-valued logic, and these different motivations can lead to fundamentally different logics. Meanwhile, it must be said that although the metaphors often inspire the preliminary definitions, in some instances the founding ideas do not actually hold up well as the logic is naturally developed further, and ultimately one can criticise a logic when it no longer reflects the motivating conceptions.

One way to define a particular multi-valued truth-functional logic is simply to specify the truth values of the fundamental logical connectives, such as ∧, ∨, ¬, →, ↔, which we can do by simply providing truth tables for them in the multi-valued setting. We may then recursively calculate the truth tables for compound assertions just as in classical logic.

Kleene logic

Kleene logic, for example, is defined by the following truth table.

Keep reading with a 7-day free trial

Subscribe to Infinitely More to keep reading this post and get 7 days of free access to the full post archives.

Already a paid subscriber? Sign in
© 2025 Joel David Hamkins
Privacy ∙ Terms ∙ Collection notice
Start writingGet the app
Substack is the home for great culture

Share

Copy link
Facebook
Email
Notes
More